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SUMMARY

The feasibility of space travel and man-made satellites
has triggered a rash of interest in the determination of
optimal trajectories and generally in guldance and control
processes. These problems, for so long of purely mathematical
and astronomical concern, have now become part of the
engineering domain. The result 1s that there 18 a great
demand for feasible numerica. solutions of the assoclated
analytic problems.

Many of these are classically of great difficulty. As a
result of the intensive study of these questions, it is now
well appreciated that the classical techniques of the calculus
of variations are inoperative unless the problem is rather
carefully selected.

In this paper we wish to sketch the applicability of a
new rithematicai technique, based on the theory of dynamic
programming, to the computaticnal solution of trajectory
problems. Many problems, seemingly inaccessible to the
conventional methods of the calculus of variations, have

already been resolved.
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APPLICATIONS OF DYNAMIC PROGRAMMING TO SPACE QUIDANCE,
SATELLITES, AND TRAJECTORIES

Richard Bellman

Stuart Dreyfus
Robert Kalaba

1. Introduection

The feasibility of space travel and man—made satellites
has triggered a rash of interest in the determination of
optimal trajectories and generally in guidance and control
processes. These problems, for so long of purely mathematical
and astronomical concern, have now become part of the
engineering domain. The result is that there 1s a great
demand for feasible numerical solutions of the associated
analytic problems.

Many of these are classically of great difficulty. As a
result of the intenslive study of these questions, it i3 now
well appreciated that the clcssical techniques of the calculus
of variations are inoperative unless the prublem is rather
carefully selected.

In this paper we wish to sketch the applicablility of a
new mathematical technigue, based on the theory of dynamic
programming [1], [2], to the computational solution of
trajectory problems. Many problems, seemingzly inaccessible
to the conventional methods of the calculus of variations,
have already been resolved, [2,%,5,6,10,14].

Naturally, there are still a number of major difficulties
to be overcome before 1t can be asserted that we possess a

routine approach to realistic processes. What 18 important is
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that we hiave o general method fur attacking guidarce and
control processes which permits us to study more complex

physical problems using quite elementary mathematical concepts.

2. A Property of Optimal Time Trejectories

Consider the problem of going from a point p 1in phase
space to a point q 1in phase space. Symbolically, let this
be represented in the figure below, where r 18 an inter—

mediate point.

7

Let some particular trajectory be pursued, and dencte by
t(p,a) the time required to traverse the path between two

generic points. Then, clearly

(1) t(p.q) = t(p,r) + t(r,q).

Consider now the problem of determining, subject to
various constraints on the allowable motions, the path of
minimum time between p and q. Then, again clearly, if r
is a point on uan optimal trajectory the times between p and
r and r and q must also be minimum times for the

respective points.
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The problem we face 1s that of starting out from p. If
we do not know the optimial trajectory, a priori, the fore-
going bit of infcrmation councerning gecdesics 1s not
particularly enlighteniny.,

We can, however, make good use >f the following part of
this information. Wherever r 18 1in phase e¢pace, and what-
ever the time consumed gcing from p to r, tae time
involved in going from r to 3 must be 3 minimum for this

part of the path.

This statement 18 a particular case of the "z~inciple

of optimality" [1].

3. Dynamic Programming Approach [3], [4]

It remains to express the foregoing 1deas in analytic

form. Let

(1) f{p) = the time consumed in going from an arbitrary
point p to a fix<d rnoint g, using an

optimal path,

Then, the principle of optimality yields firstly the

equation

(2) f(p) ¢ t(p,r) + £(r),

for any path prq. To determine r, we minimize cver all

admissible choices of r, cbtalning the basic equation

(3) f(p) = min [t(p,r) + £(r)].
) G
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of trajectory problemz.
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[Jo

pest paths, as i dlscvassed in [T].

4., Braochistochrone

As an example, let us consider the classical brachisto-
chrone problem, G@Given two points, P and Q, 1in a vertical
plane, we wish to determine a curve connecting thesa two
points with the property that a particle sliding down this
curve, solely under the 1influence of gravity and with no
frictional forces, will traverse the path in minimum time.

Take P to the orisin anid let Q be the fixed point
(xo,yo), as irdicated below.

Omitting the gravitational constunt, of nc¢ import, the
problem in the calculus of varlations is that c¢. minimizing
the integral
(1) J(y) -dg’ "o (l—*}l '—2-)1'/2ax
over all curves satisfyinz the end corditions y(0) = O,
y(xo) = Yo+ In place of treating this in the usual fashiun,
a la Buler equation and 30 on, let ug introduce the function

f(x,y) defined as follows:

(2) fi{x,y) = the time reqguired for a particle to fall
from (x,y) to (xo,yo) along an optimal

path.
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Then a particularizeation of (3.3) yields the functional

equation

(3) f(x,y) = min [(1—+5;y—'-2-)1/2l\ + £(x + 08,y + y'0) + 0(0)]
J

where y' represents the slope of a proposed path at x, and

A 1s an infinitesimal.

Passing to the limit, we can obtain a partial differential
equation for f which turns out to be equivalent to the Euler
equation. But this is not what we wish to do! Instead we sub—
divide the x 1nterval into N parts, where NA = x and
regard f(kd,y) = rk(y) as a function of y for 0 < V¥ <V,

Then (3) becomes

2 1/2

[(1—191'—) &+ £, (v + y'A)].

for k =0,1,2,...,N — 1, with fN(y) = 0. The determinat‘on

(8) £,(y) = min
y

of fk(y) is a computational process which we refer to a

digital computer. The minimization over initial directions is
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carried out not by means of calculus, but by means of a direct
search process over allowable slopes.

One conseuence of this is that constraints on y!
simplify the computational process, as they should since we
have fewer pollcies to examine. Purther details of the
computational ispects, whioh are seldom trivial, will be

found 1in [10].

5. Minimum Energy

Suppose that we wish to go from p to q 1n phase space,
reverting to the general formulatlon of {5, at minimum cost
in resources, say minimum fuel. Regarding ¢t(p,r) not as a
time, but as a cost for gettins from p to r, wc see that
the general equation of (3.3) is still valid.

Generally, we can treat any variaztionzl problem in this
fashlion, providing it has the Markovii: property that we have
been smploying. To use the foregoingz method we need merely
know that the optimal continuation from any point in phase
space depends only upon that point, and not upon the past
history of the prooess.

Thus, not only can general variational problemes involving
standard functionals of the form

X
(1) Hy) =/ * &lx,5,5" )ax,
o
be handled but alao many clzsses of impliclt variational
problems [5], [9] which cannot reudily be treatzd by

conventional methods.
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6. S8tochastic and Aduptive Control Processes

Finally, the same genersl techniques can be used to treat

the more complex stochzstic and adaptive control oprocesses

[8,9,11,12] .

7. Discussion

The trajectory and feedback contrcl problems sketched
in earlier sections represent merely one spplication, albelt a
particulerly important one, of the furctional eyuation tech-
nique of dynamic programming to the solution of space
problems. Problems which lead to multlistuge decision pro-—
cess8s also occur in the zreas of design of multistage rockets
(i4], communication [3], [15], propagation [13], equipment
relisbility [16], equi.ment replucement [17], [18], and so on.

The desire for the design of mcre nearly optimal systems
coupled with the inevitable advances in computer technology
should bring dynamic progruamming methodolozy into a position
of increasing importance in the future in the resolution of

space optimization problems.
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